

417

Basic Level

1.	Let S be a finite set containing n elements. Then the total number of commutative binary operations on S is								
	$\frac{n(n+1)}{2}$	$\frac{n(n-1)}{2}$		" ²		" ²			
	(a) n^{-2}	(b) n^{-2}	(c)	$n^{\prime\prime}$	(d) 2	n			
2.	If <i>S</i> is a finite set having	n elements, then the total num	ıber	of non-commutative bin	ary op	eration on S is			
	(a) $n^{\frac{n(n+1)}{2}}$	(b) $n^{n^2} - n^{\frac{n(n+1)}{2}}$	(c)	$n^{2} - \frac{n(n-1)}{2}$	(d) <i>r</i>	$n^{\frac{n(n-1)}{2}}$			
3.	If the composition table	e for a binary operation * defi	ned o	on a set S is symmetric	about :	the leading diag	gonal,		
	then								
	(a) * is associative on S	3	(b)) * is commutative on S					
	(c) <i>S</i> has the identity ele	ement for *	(d)) None of these					
4.	Subtraction of integers i	s an operation that is				[CET	1994]		
	(a) Commutative and as associative	sociative		(b)	Not	commutative	but		
	(c) Neither commutativ	e nor associative	(d)	(d) Commutative but not associative					
5۰	The law $a+b=b+a$ is call	lled							
	(a) Closure law	(b) Associative law	(c)	Commutative law	(d) I	Distributive law			
6.	If any one of the rows of row of the table, then	f the composition table for a b	inar	y operation * on a set S	s coinci	des with the top	most		
	(a) S has a left identity	for *		(b)	S has	a right identity f	for *		
	(c) S has the identity ele	ement for *	(d)) * is commutative and	associa	ative on S			
7.	If any one of the colum most column of the table	ns of the composition table for e, then	r a b	inary operation * on a	set S c	coincides with th	e left		
	(a) S has a left identity	for *		(b)	S has	a right identity f	for *		
	(c) S has the identity ele	ement for *	(d)) * is commutative and	associa	tive on S			
8.	Which of the following b	pinary operations is commutativ	ve						
	(a) * on <i>R</i> , given by $a * b$	$b = a^2 b$							
	(b) O on R, given by <i>a ob</i>	$b = a^b$							
	(c) Δ on $P(S)$, the power	er set of a set S given by $A\Delta B = ($	A - B	$() \cup (B-A)$					
	(d) None of these								

Get More Learning Materials Here : 📕

Basic Level

1.	A problem to be solved is not subjected to any conditions on variables and is not repetitive in nature. The basic control operation to be used is							basic
	(a) Sequential	a) Sequential (b) Selection		Repetitive	(d) None of these			
2.	A computer can execute							
	(a) An algorithm	(b) A flow-chart	(c)	A program	(d) I	None of thes	e	
3.	A basic control structure	always has						
	(a) One entry and two expoints	xit points		(b)	Two	entry and	one	exit
	(c) One entry and one ex	xit points		(b)	Anv	number of	entrv	and
	exit points				5		J	
4.	The heart and nerve cent	tre of a computer is						
	(a) Input unit	(b) Output unit	(c)	CPU	(d) N	/Iemory		
5٠	An algorithm must have	at least				-		
	(a) One input	(b) One output	(c)	One assignment	(d) N	Jone of these	9	
6.	A number of data items a	are to be read in a problem. The	con	trol structure needed is				
	(a) Only sequential	(b) Only selection	(c)	Selection or repetition	(d) S	equential		or
	repetition							
7.	The control structure IF-	THEN-ELSE is a						
	(a) Single selection	(b) Multiple selection	(c)	Repetition structure	(d) N	lone of these	9	
8.	The FOR-DO construct ex	ecutes the loop at least						
	(a) Once	(b) Twice	(c)	Thrice	(d) N	lone of these))	
9.	The control structure CA	SE-OF is a						
	(a) Single selection	(b) Multiple selection	(c)	Repetition structure	(d) N	lone of these))	
10.	If $A = 15$, $B = 22$, the value	ue of X after execution of the fol	low	ing pseudo code prograi	n is			
		READ A, B						
		$IF A \subset B$						
		IF $A \subset 10$						
		$X \leftarrow A + B$						
		ELSE $X \leftarrow B - A$						
		END						
	(a) 7	(b) 15	(c)	22	(d) N	Ione of these	2	
11.	If $A = 7$, $B = 9$, the value	of A after execution of the follo	wing	g pseudo-code program	is			
		BEGIN						
		INPUT A, B						
		IF $A > B$						
		$IEMP A \leftarrow B$						
		$B \leftarrow A$						

Get More Learning Materials Here : 📕

CLICK HERE

				Compt	iting 413
		$A \leftarrow \text{TEMP}$			
		ELSE			
		STOP			
		END			
	(a) 7	(b) 9	(c) 7 + 9	(d) 7 – 9	
12.	What is the decimal equ	ivalent of binary number 10101			[DCE 1999]
	(a) 20	(b) 21	(c) 22	(d) 23	
13.	The octal equivalent of	(101001110) ₂ is			[DCE 1994]
	(a) 116	(b) 561	(c) 615	(d) 516	
14.	What is the decimal equ	ivalent of the octal number 219			[DCE 1999]
	(a) 140	(b) 145	(c) 150	(d) 155	

Advance Level

15.	The value of <i>P</i> by execution of the following algorithm is							
	$P \leftarrow 1$							
	$I \leftarrow I$ Step I: $D \neq D * I$							
	Step 1. $I \leftarrow I + 1$							
	If $I > 6$	Stop						
	else Go To	Step I						
	Output P							
	end							
	(a) 6	(b) 24	(c) 120	(d) 720				
16.	Study the following algo	rithm						
	Sum $\leftarrow 0$							
	$I \leftarrow 0$							
	Repeat							
	$Sum \leftarrow Sum + (2I +$	1)						
	$I \leftarrow I + 1$							
	until $I \ge 6$							
	Then the minimum value	e of Sum is						
	(a) 36	(b) 49	(c) 140	(d) None of these				
17.	The statement							
	For $k = 1$ To 10 by 2	0						
	uo 5							
	(a) 2 cycles	(h) 5 cycles	(c) 10 cycles	(d) None of these				
	(u) 2 cycles							

Get More Learning Materials Here : 💻

Computing										As	signr	nent	(Basi	c and	Adva	nce Le	evel)	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
	a	с	с	с	b	b	a	a	b	a	a	b	d	b	d	b	b	

Binary Operations

Assignment (Basic and Advance Level)

1	2	3	4	5	6	7	8
а	b	b	с	с	а	b	с

Get More Learning Materials Here : 📕

